The Automorphism Group of a Finite p-Group is Almost Always a p-Group
نویسنده
چکیده
Many common finite p-groups admit automorphisms of order coprime to p, and when p is odd, it is reasonably difficult to find finite p-groups whose automorphism group is a p-group. Yet the goal of this paper is to prove that the automorphism group of a finite p-group is almost always a p-group. The asymptotics in our theorem involve fixing any two of the following parameters and letting the third go to infinity: the lower p-length, the number of generators, and p. The proof of this theorem depends on a variety of topics: counting subgroups of a p-group; analyzing the lower p-series of a free group via its connection with the free Lie algebra; counting submodules of a module via Hall polynomials; and using numerical estimates on Gaussian coefficients.
منابع مشابه
On the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملA Note on Absolute Central Automorphisms of Finite $p$-Groups
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
متن کاملTHE AUTOMORPHISM GROUP OF NON-ABELIAN GROUP OF ORDER p^4
Let G be a finite non-abelian group of order p^4 . In this paper we give a structure theorem for the Sylow p-subgroup, Aut_p(G) , of the automorphism group of G.
متن کاملOn equality of absolute central and class preserving automorphisms of finite $p$-groups
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...
متن کاملTHE AUTOMORPHISM GROUP OF FINITE GRAPHS
Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.
متن کامل